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Abstract 
v__ 

Stochast ic  d i f f e r e n t i a l  equations whose d r i f t  t e r m  do 

not s a t i s f y  the  usua l  ( I t a )  Lipschitz or l i n e a r  grovhh conditions 

i n  the  s t a t e  occur f requent ly  as models i n  s tochas t ic  control 

theory.  Local s t a b i l i t y  proper t ies  a re  usefu l  f o r  proving g loba l  

exis tence f o r  ordinary d i f f e r e n t i a l  equations whose r i g h t  hand sides 

grow too f a s t  or a re  not Lipschitz i n  the  s t a t e .  

l o c a l  s tochas t ic  s t a b i l i t y  property to prove global  existence,  

s t a b i l i t y ,  ergodici ty ,  t he  s t rong Markov and other  propert ies ,  for 

a c l a s s  of d i f fus ions  which occur f requent ly  a s  models. 

Here, we use a 



1. Introduct ion - __^_ 

For a vec tor  x = {x.} and matrix a = {a. .), d-efine the  
1 1J 

2 2 Euclj-fi-ean norms Ix12 = 

geneous It: s tochas t i c  d i f f e r e n t i a l  equation 

Xi, { G I 2  = c.rJij, resp. Consider the  homo- 
1 i, J 

-k 

t > O  (1) d2i = f ( x ) d t  + a(x)dz,  I 

++ where a ( * )  satisfies gro-wth and Lipschi tz  conditions of t he  t m e s  

2 
( 2 4  l + > l  - < K ( 1 + / X l 2 )  

(*b ) I + )  - 4 Y ) l  - < K(l+lx/ 1, 

and z ( t )  i s  a normalized vector  valued Wiener process.  If 

(38) 

then t h e  I t o  ex is tence  theory i s  appl icable  to (1) and the  s t a b i l i t y  

proper t ies  can be discussed [l]. If  (3b) holds loca l ly ,  bu t  (Ja) i s  

v io la ted ,  a ' l o c a l '  s t a b i l i t y  property([ l ] ,  Theorem 8, Chapter 2 ) 

ensures t h e  exis tence of a so lu t ion  to (1) f o r  a l l  t > 0. 
I 

-!- The homogeneity condition i s  not e s sen t i a l ,  except i n  Section 4.  

K and Ki always denote r e a l  numbers; t h e i r  value may change from 

usuage to usuage. 

++ 
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Recent inves t iga t ions  C2-32 have s tudies  an ihportant  c l a s s  

of  equa.tions (1), where f ( . ) i s  allowed some d i scon t inu i t i e s .  Re- 

wri te  (1) i n  the  form (x and x are  vec to r s ) .  1 2 '  

f (x) d t  

f (x)dt  4 ^f(x)dt + ;(x)dz 

- - 

2 
(43 d x  = 

i A 

where we assume t h a t  t h e  f and CT s a t i s f y  ( 3 )  and (2 ) ,  respect ively,  

and .̂(x) bas a uniformly bounded inverse .  (Thus ;-'(x) s a t i s f i e s  

(2) .), but  f ( - )  does not  necessar i ly  s a t i s f y  (3). In  tlie sequel, 

we prove existence,  uniqueness, and other  proper t ies  of ( k ) ,  when 

ne i the r  (3a) nor (3b) necessaxily holds, bu t  a ' l o c a l '  s t a b i l i t y  

property obtains,  and a l s o  t r e a t  t h e  problems of asymptotic s'iaTsility, 

t h e  exis tence of a unique invar ian t  measure and the  convergence of 

t h e  measures of (1) to t he  invar ian t  measure. 

A 

-- 

Diffusions of t he  type (4) occur f requent ly  i n  con t ro l  

appl ica t ions .  Consider, f o r  example, a 'white noise '  driven n ' t h  

order d i f f e r e n t i a l  equation where f i s  a ' bang-bang' con t ro l  

taking t h e  values (cl,-l], or  which may be discontinuous on a 

smooth 'switching curve ' ,  and tend to i n f i n i t y  i n  ce r t a in  

d i r e c t i o n s .  Also  models such as  

A 

dx = x d t  1 2  
d x =  

dx2 = -(x +x3)dt + adz 1 1  

are  sometimes used, and the  existence, and asymptotic charac te r  of 

t h e  corresponding measures a re  of i n t e r e s t .  
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2. Mathematical Preliminaries 

Assume 
A 

( C l )  f i  and G s a t i s f y  ( 3 )  and ( 2 ) ,  respect ively,  and 

$-'(x) i s  uniformly bounded.. ?(.) i s  a vector  valued Bore1 func- 

t i o n  of x which i s  boumded i n  any compact s e t .  

( C 2 )  The pyocess ( 5 )  has a t rans i t io i i  densi ty  p(x; t , y ) .  

( C 3 )  (Acondition on the d i s c o n t i n u i t i e s  of f.) Le% sm 
h 

denote a shpere of radius  m, whose center  i s  t h e  or ig in .  Let E,(A) denote 

an E-neighborhood of the  s e t  A and p(A) t h e  Lebesgue measure of 

A .  Suppose t h e r e  i s  a (discont inui ty)  s e t  D so t h a t  

as E -+O foi- each 

so t h a t  Ix-y] < e 

i n  bounded regions, 
- . ~ 

m < 03. For each E: > 0, l e t  there  be an E > 0 

h 

implies Ihf(x,t) - f(y,t) l  < E' uniformly i n  x 

provided t h a t  x NE(D) .  
__ - . . . _ _  

. .  .. 

Assume ( C l ) .  Let fl denote t h e  sample space. We use the  

-@t 
notat ion (0, z (t) , Bt, P) for the  Wiener process on [0, QO), where 

measures z(s), s < t and z ( r 2 )  - z ( r ,  ) is independent of  at for  

t < r < r2, and P i s  t h e  aeasure on a l l  t h e  gt. We say t h a t  z ( t )  

i s  a Wiener process on (0, B t , P ) .  Let. x ( t >  be the  unique solut ion 

t o  t h e  I t6 equation ( 3 )  

I -  

_. - 
- 1 -  
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(% 

1 1  dx = f (x)d-L 
d x =  

2 2  dx = f (x)dt + 2fx)dz 

We say t'nat x ( t )  i s  an It$ process with r e spec t  t o  ( Q , z ( t ) , ~ t , P x ) ,  

:There 

denotes the  corresponding expectation). E and P denote expectation 

and p robab i l i t y  for funct ionals  of z ( t ) .  Define R as the  sample 

space f o r  z ( t ) ,  t I < T. Suppose t h a t  

denotes the  p robab i l i t y  given t h a t  x ( 0 )  = x (and Ex 
pX 

T 

(which i s  c e r t a i n l y  t r u e  i f  $' i s  boumded). Define 

and suppose t h a t  

T A  Ex exp <,(f) = 1. 

((7) holds for a l l  T < w i f  f; i s  bounded.) Then t h e  p r o b a b i l i t y  
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-T t 
rn.easu.re P defined by 

ry i s  a measure on t h e  gt, t < T The process z ( t ) ,  t < T - -  - 
rv t A - 1  

z ( t )  = z ( t )  - 1 D (x(s))?(x(s))ds  
0 

i s  a Wiener process on (RT, gt,?:), and the process 

fl(x)dt 

f (x)dt  c f ( x ) d t  + a(x) [dz - ci 

d x =  
A- 1 A A 2 

( 8 )  
(x)?(x)dt]  

- f l (x)dt  
- 

f 2 (x)at 4- ?(X)dt + $(x)d? 

A -T 
i s  an I t o  process with respect  t o  (QT,;( t ) ,gt ,Px) .  The construction 

was f i r s t  done by Girsanov [4],  and exploited by Benes [?I ,  Rishel  [2] 

and then Kushner [3], f o r  severa l  cont ro l  problems. 

space 

Note' the  s m p l e  

t h e  a-algebras gt and t h e  random var iab les  x ( t )  for 'T3 

same as those f o r  t h e  Wiener process z ( t )  and It$ process (?), for 

t < T. Only t b e  measures have been changed. The process (8) i s  
I 

constructed by a transformation of measures on t h e  'n icer '  process ( 5 ) .  

__.- 

The measure .PT depends on the  i n i t i a l .  condition of ( 5 ) ;  as does t h e  + 
X 

N 

Wiener process z ( t ) .  
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The following f a c t s  (drawn from [2-41) about (8) w i l l  be 

A 

needed. Assume t h a t  f i s  bounded and t h a t  (Cl-3) hold.  
- 9 - p  - - 

(01) ([3], Theorem 3 ) .  The multivariate.  d i s t r ibu t ions  

of (8) a r e  continuous with respect  t o  t he  i n i t i a l  condition x ( O ) ,  

( i n  t h e  sense t h a t  t h e  chazac te r i s t i c  functions a r e  continuous i n  x ( 0 ) ) .  

(02) ([ 3 3 ,  Theorem 2 ) .  The so lu t ion  t o  (8) i s  unique 

i n  the sense t h a t  any two solut ions t o  (8) have t h e  same multiva,riate 

d i s t r i b u t i o n s  e 

- NT sup lx(s) - X I  4 < Klt2(1+Ixl 4 ), < T - 
t > s x  EX 

NT 
where Ex i s  t h e  expectation given x(0)  = x, and K- depends on t h e  

bound on ?. 
I 

Tile proof of (03) i s  c lose  to t h a t  of (27) - (28) of 
A 

[3] Theorem 6. K1 depends on t h e  bound on f .  

(04) If the  process (3 )  has a dens i ty  p(x; t , y ) ,  then 

so does (8) and t h e  densi ty  of (8) i s  any vers ion of ([2], Lemma 1), 

(boundedness of f i s  not required i f  (6) - (7) ho ld )  for t < T 
h - 

A 

A l s o  (f i s  no t  required t o  be bounded i n  ( 0 3 ) ) .  

(05) ( [&I,  Corollary to Lemma 3). Let g(w) be Bt 
NT 

measurable with ExIg(cu)/ < m, and t - < T. Then, fo r  s - -  < t < T, w.p.1. 
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(The equation a l s o  holds i f  gs is replaced by a.ny sub a-algebra 

of BS4 
cy -T 

Suppose t h a t  (6) - (7) hold f o r  a time 

Fix T, and. define z ( t )  and Px by t h e  Girsanov tzansformation. 
N 

Write z ( t )  c as ?'(t). T1 > T, 

T 
N 

T 
W T 1  -3 - 1  

-T W T 1  

and clefine t h e  corresponding z (t), P, . Then z (t) = z it) 

f o r  t < T, and on s e t s  B of gT we haxe Px(B) = PX (B).  This 

folZows from (rO.5) since (s 
I 

i s  the  c h a r a c t e r i s t i c  function of t h e  set, B) 

rn rn  

wT1 -T Thus Px i s  an  extension of P . If (6) - (7) hold for each X 
N 

T . <  03, we can replace 

a l l  t h e  gtj t < 03, which w i l l  be cons is ten t  with the P on gT. 

Then G ( t )  w i l l  be an It; process with respect  t o  

RT by- R and define a unique measure - P, on 

-T 
X 

(R,Bt,Fx), and 

(a,;(t),gt,?,) an Its process ( f o r  a i l  

hold for a l l  T < w i f  f i s  bounded. L e t  58' = u gt. 
t < w ) .  Both (6) - (7) 

h 

tx - 
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A 

3 .  Existence of a Solution t o  ( 8 )  f o r  Unboufided -L_ f 
I-.-Dp-.=--. 

Let V(x) denote a non-negative twice continuously d i f -  

f e r en t i ab le  function which tends t o  I n f i n i t y  as 1x1 -> M. Define 
A A 

and f (x) = 0, N I &r: = {x: V(x) < E} and l e t  f (x) = ?(x) for  x Q N 
x 1 s. Define CT = {cu: x ( t )  E QN, t E [O,T]].  L e t  2 denote t h e  

d i f f e r e n t i a l  generator of' t h e  process (8) and wr i t e  2' 
d i f f e r e n t i a l  generator when f i s  replaced by i n  (8). Theorem 1 

uses a s t a b i l i t y  idea t o  prove exis tence f o r  ( 8 ) ,  f o r  a l l  

N 
f o r  t h e  

A 

t < 03. 
.. 

Theorem 1. Assume (Cl) and the  above conditions on V(x). --- 
L_- 

Let ?V(X) < o I_ for  x not  i n  some a < w. - 
rrm _I - 

(9) 

fo r  a l l  T < co, and - 
N 

z ( t )  = z ( t )  - :2-l(x(s))P(x(s))as 0 

i s  a Wienw process,  fo r  a l l  t < w with respect  t o  

The so lu t ion  t o  (8) e x i s t s  for  a l l  t < w. 

respect  t o  (Q,;(t)? Bt,") and, under t h e  addi t iona l  assumptions 

((22-3) , it is unique ( i n  t he  sense tha,t t h e  mul t ivar ia te  d i s t r i b u t i o n s  

sf any two so lu t ions  are equal) for all 

(n, Bt,Tx) I 

It i s  an It$ process with - 
- 

t < co. 
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Remark. Let f(y),cr(y) s a t i s f y  ( 3 ) ,  ( 2 )  locailjr, and l e t  
-_y_ 

Zl 
f ( y ) , o ( y ) .  If V(x) and ZIV(x) have the  proper t ies  required i n  

Theorem 1, then t h e  proof can be a l t e r e d  t o  y i e l d  existence and 

uniqueness f o r  t‘ne process 

deno-te t he  d- i f fe ren t ia l  generator, with coe f f i c i en t s  determined by 

dy = f ( y ) d t  -t cr(y)dz. 

A 

Proof. Let ^fN replace f ,  i n  (8), where N > a. Let 

denote the  transformed measuye with -N, Px T (A) = I exp c0 (  T P d P  ) 
A X 

“‘N,T t o  the  cr-algekra 9 on R.  Write and ?$ t h e  extension of P 

t he  Wiener process corresponding t o  as  z (t) (instead of  g ( t ) ) .  
A -N 

Thefi (8) i s  an I t o  process with respect  t o  (R,z (t), gt,y) - By 

v i r t u e  of (03) ( f o r  x = x(0)) 

X 

-N 
X 

as  t + 0 ,  uniformly for x i n  compact i n t e r v a l s .  Also  

-N -I- 2 V(x) < 0 i n  % - Qa - &N . Let T denote t h e  f i rs t  exis t”  t h e  
> a  - 

Since 

%- +% i s  t h e  boundary 02 t h e  s e t  

+-I- If T i s  undefined f& some path, s e t  T = +CQ. Note t h a t  t h e  e x i t  

time T(U) (as a pa th  function) f o r  x ( t )  and zN(t) a r e t h e  same; 

but  t h e i r  d i s t r i b u t i o n s  may d i f f e r .  
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-&I ExV(x(t fl T)) - a - < (N-a)?:{x(s) h i t s  before &a and 

leaves %,a i n  [O, - t ] ] ,  

we can conclude t h a t  

(11) -N Px(x N (t) h i t s  aN b e f x e  ?Qa and leaves QN,a i n  [O,T]] < -- W - a  - - - N-a - €3’  

We w i l l  show t h a t  for  each E > 0, the re .  i s  an M < 00 so 

that  

Fix a1 > a. Let x E aa. There is a Eo > 0 so that  



“1 
But (13) i a p l i e s  t h a t  t h e  constsnt  

and does not depend on N, f o r  N > al. Thus, we can a s s m e  t h a t  K 

does not  depend on N. 

K2 depen s only on t h e  nunher 

2 

T Let GN denote the event t h a t  x ( t )  goes t o  before  

%,a), then takes  more time than T/n E 6 t o  1 
(or never leaves 

reach sal, then r e tu rns  to &a no fewer than n - 1 a.dditiona1 

times and a f t e r  each r e tu rn  takes  no l e s s  than 
&al El to reach 

before leaving &r\r f o r  t h e  f i r s t  t ime. Then p(C!:} > F [ G T )  and 
X - x N  

Thus, using 6 1 = T/n, 

and N and n can be chosen so  t h a t  ??[G;} 2 1 - E .  

m e r e  i s  a unique measure sT on -!@* which i s  cons is ten t  
X 

with t h e  ?: on the  s e t s  (2:. Furthermore, ( the l e f t  hand inequa l i ty  

i s  [4], L&a 2) 
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N 

Since E i s  a rb i t r a ry ,  (9) hold.s, z ( t ) ,  t < T, i s  a Brownian motion 

w i t h  respec t  t o  (QT,Bt,??) x ( t ) ,  t - < T, am Ito process with 

respect  t o  (QTj z (t), gtj?:). Furtheremore, s ince T i s  a rb i t r a ry ,  

we can rep lace  t < T by t < w and ?: and R 

- 
A 

and 
N 

by FX and R.  

The process (8) i s  unique i n  the  following sense. Suppose 

T - 

t h a t  both xi(t) ,  i = 1 , 2  s a t i s f y  (8). 

processes izrhich r e s u l t  when ? replaces  f. Suppose t h a t  i f  

xijN(t) E &rJ f o r  a l l  t E [O,T], then xi(t) coincides with x i N  (-t)  

on [O,T]. Then the  uniqueness of t h e  xijN(t) ( i n  the  sense of 

mult ivar ia te  d i s t r i b u t i o n s )  and the  f a c t  t h a t  

for M > N ( the do n o t  depend on i) imply uniqueness of t h e  

x (t) i n  t h e  sense of mult ivar ia te  d i s t r ibu t ions .  Q.E.D. 

Let xiJN(t)  denote t h e  
A 

"N T -M T 
PX{CH] = P (C ] > 1 - E: x N -  

i 

Remark. Lenma 7 of C4.1 would appear t o  y i e l d  exis tence for -- 
A 

a l a r g e  class of unbounded f .  But an examination of the proof shows 

t h a t  i t s  content i s  t h e  following. Let processes ( 3 )  and (8) e x i s t  

with respec t  t o  some Wiezer process, with ( 5 )  being unique, and 

A - 1  

la 

( 5 ) .  

(x ( t ) ) ? (x ( t ) )  1 'dt < 03 w.p.1, where x( t )  

Under some minor subsidiary condition, it i s  prove6 t h a t  

I s  t h e  solution t o  
0 
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where t h e  expectation corresponds to ( 3 ) .  

by a Girsanov transformation f r c m  ( 5 ) .  

i n t e g r a b i l i t y  property and existence f o r  (8) mast  be es tab l i shed  

first. B u t  these  propert ies  a r e  eesential.ly t h e  desired r e s u l t .  

Then (8) can be obtained 

But both the square 

3 .  Markov Fropert ies  of (8) 

W i t e  (C4) :  I n  each compact x s e t ,  there  i s  an a > 1 

and M < co so  t h a t  

t ,y) < M < 03. - 

Theorem 2. Assme (Cl) - (‘23) and the conditLon on V and 
N 

ZV of Theorem 1. Then the  process (8) i s  a strong Markov process.  

If (C4) holds, for  some a 1, (8) i s  a strong F e l l e r  process. 
I 

Proof. T he terminology of Theorem 1 w i l l  be used. By _II 

Theorem 1, the  process i s  defined on t h e  time i n t e r v a l  

has continuous paths w.p.1. 

[O,CO), and 

F i r s t ,  we prove t h a t  (8) i s  a Markov process. Let gt X C :gt 
‘v measure x(s),  s < t. Define t h e  t r a n s i t i o n  function Px(x; t , A )  = 

Px[x(t) E A). 

- 
N 

Since t h e  right hand term of 
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fv 
i s  a Bore1 measurable function of x, so  i s  P(x; %,A) f o r  each 

A E 9;. NOIT assune t h a t  replaces f .  The Chapman-Kohogorov 

equ-ation holds since,  by (05) and the  f a c t  t h a t  ( 3 )  i s  a Markov 

A 

-.-_____P_- 

process , 

. .  

w.p.1. 

ess on 

Markov process. 

Thus by the  d e f i n i t i o n  Dynkin [6, Chapter 31, xN(t)  ( the I%$ proc- 

(s2,;N(t), gt,?$) corresponding t o  the use of p) i s  a 

N 

The a-algebras gt a lso  measwe (8). The measure Px for  

t h e  unbounded 8, has the correc t  conditioning propert ies  since,  by 

(03) and the  dominated convergence theorem, 

--j Ex['{x(t+s)€A] exp cs t+s(P) p;] = 

[ X  ._ exp (:(;)I = ?(x(s);t,A) 
= Ex(s) [x(L)€A) 

w.p .1 .  Then, by t h e  d e f i n i t i o n  [6, Chapter 31, (8) i s  a Markov process.  



-15- 

+ (8) i s  a F e l l e r  process, hence a s t rong Markov process [6, 

Theorem 3.101. The proof i s  omitted. The proof of t h e  s t ronger  

' s t rong '  Feller" property w i l l  be given next, under t h e  addi t iona l  

condition (C4) .  Let (C4) hold.  

Supposing t h a t  (8) i s  a s t rong F e l l e r  process i f  f. i s  
A 

bounded, 'F;e show t h a t  it i s  a s t rong F e l l e r  process for unbounded 

Let g ( . )  be bounded and measurable. Then Exg(x(t))  5 G (x) i s  

continuous i n  x, for t > 0. Write G(x) = % g ( x ( t ) ) .  Then 

f .  

"N N 

X 

uniformly in any conpact x s e t .  Thus, G(x), being the uniform 

limit;  of continuous functions,  i s  coiitinuous. 

A 

Fina l ly ,  suppose f i s  bounded and (C4) holds. Reproducing 
--r__l I__ 

an argument of Rishe l  [ 2 ] ,  we show for each compact 

a f.3 > 1 and M < w s o  t h a t  (q i s  t h e  dens i ty  of (8) - see (04)) 

x set, t he re  i s  

4- A process x ( t )  i s  a F e l l e r  process if E f ( x ( t ) )  is a continuous 
funct ion of x, i f  f(x) i s  continuous an8 bounded. 

-I-+ x ( t )  i s  a s t rong  F e l l e r  process if  E x f ( x ( t ) )  i s  continuous i n  x 

for  m y  bounded Bore1 funct ion f(x) and t > 0. 
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cv t.. -1 Define r(x; t , y )  s Ex[exp c , ( f ) lx( t )  = y] .  Let m-' + n = 1, 

and note  t h a t ,  for my p > 1 and compact x se t ,  t he re  i s  an 

Np < (TJ so t h a t  Exexp P (:(;) 5 Np (r43, Lema 1). Let p > B,, p > 1. 

By Holder's inequal i ty  

We can choose f3 > 1, f3 > p,, m, n and p > 1 so t h a t  (B-pl)m = a, 

gn = P, p n = 1, which , together  with (CLt}, proves (14).  Equation (14) 

implies t ha t ,  as  x v a r i e s  i n  any compact s e t ,  t he  family q(x; t , y )  of 

1 

functions of  y i s  u n t f o m l y  in tegrable .  This, together  with t h e  con- 

t i n u i t y  ( in  x) of P(x; t,(-.w,a)) for any vector  a ( r e c a l l  t h a t  t h e r e  

i s  a densi ty)  implies t h a t  ?(x; t , A )  i s  continuous i n  x f o r  any Bore1 

s e t  A, which implies, i n  turn,  the  s t rong F e l l e r  property.  For more 

d e t a i l ,  note t h a t  t h e  boundary of any rec tangle  i n  the range apace of 

Iv 

- - . . . . I 

.- 

x ( t )  has zero probabi l i ty ,  and t h a t  ?(x; t , A )  i s  continuous i n  x 

i Z  A i s  t h e  sun of rectangles  (open or c losed) .  

continuous i n  x f o r  a co l l ec t ion  of sets 

t o  A 

Let ?(xi f.,A,.) be 

which increase monotonically 
Aj J 

The second i n t e g r a l  goes t o  zero as j - + w  uniformly i n  x i n  any 
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conpact s e t ,  by the  uniform i n t e g r a b i l i t y  of 

f i r s t  i n t e g r a l  i s  continuous, so  i s  the  uniform l i m i t  ?(xi t , A ) .  

q(x; t , y ) .  Since t‘ne 

Q.E.D. 

11. The Invar ian t  Measure, and t h e  Asymp-totic - 
Proper t ies  of t h e  Measures of (8) 
I .-I 

I n  [ 8 ] ;  under t h e  conditions ( D l )  - (D5), Khasminskii 

proved t h e  exis tence of a unique a - f i n i t e  invar ian t  measure for a 

process x ( t )  with a s t a t iona ry  t r a n s i t i o n  funct ion P(x; t , A )  

under the  conditions ( D l - 5 ) .  

N 

... 
(Dl) For any E neighborhood N (x) of x, 5. - Pfx; t,NE(x)) = e 

o ( t )  uniformly i n  x’ i n  any compact se t .  

(D2) The process i s  a strong Markov and s t rong F e l l e r  

process.  

(D3) ‘yP(x; t , U )  > 0 for  all open sets U and t > 0. 

. .  

(D4) 

(D5) The process is  recur ren t .  (There i s  some compact 

The paths  a re  continuous w.p.1. 

s e t  K and a random time T < w w.p.1. so  t h a t  x(k) E K w.p.l., 

f o r  each i n i t i a l  eon&tion. ) 

I n  [ g ] ,  Kushner appl ied t h e  r e s u l t  i n  [8] to obtain a 

s u f f i c i e n t  condition for t h e  convergence of t h e  measures of c lass  of 

d i f fus ions  t o  a unique inva r i an t  measure. Theorem 3 includes t h e  

p r i o r  r e s u l t  as a s p e c i a l  case.  Zakai [lo] has t r e a t e d  t h e  invar ian t  

measure problem f o r  a class of d i f fus ions  sat-isl’ying (2) - ( 3 ) ,  using 



- 1%- 

a general  method ofEenes [ll]. 

E l l i o t ' s  method involves a condition on a, Lie a lgebra generated by 

A s imi la r  problem i s  t r e a t e d  i n  Ell.iot [12]. 

c e r t a i n  funct ions of t h e  d i f fus ion  coef f ic ien ts ,  which i s  hard t o  

check i n  spec ia l  cases .  The r e s u l t  of Benes [ll] (concerning only 

exis tence of an inva r i an t  measure) uses t h e  condition t h a t  

lim P(x; t , K )  3 0 '  f o r  a l l  compact s e t s  K. This would not always 
IxI- 

hold under our condi t ions.  E.g., t h e  so lu t ion  t o  2 + x 3 = 0, reaches 

x ='1 i n  a time t h a t  i s  bounded as 

pect  a s imi l a r  r e s u l t  for 

x(0) -+ w, and we would expect a 

dx = - 2 d t  + odz. 

Theorem 3 .  Assume (Cl) - (Cb), and the  conditions on V ( . )  --- 
i n  Theorem 1, except l e t  

have a nowhere-zero d e n s i t y ,  f o r  each i n i t i a l  condition x. 

has a unique invar ian t  measure a(.) and T(xj t , A )  + ~ ( A I  as t + eo 

%(x) < - E  < 0 outside of Qa. Let ( 5 )  
-_. - 

-_I__ --- 
m e n  ( 8 )  -- __I 

I 
- 

for any x. Both Ffx; t ,A)  and Q(A) have nowhere zero dens i t i e s .  - - 

Remark. Theorem 3 only dea ls  with invar ian t  measures, but  

almost a l l  of s t a b i l i t y  r e s u l t s  i n  [l] can be c a r r i e d  over t o  t h e  

problem with discontinuous dr i f t  terms. 

ProGf. The second inequal i ty  of (03)  implies (D1) for 
h 

bounded f ,  and, hence, for t h e  processes xN(t) .  But, T f  (Dl) holds 

for each 

Since Ex[exp c o ( f ) l x ( t )  = y] > 0 w.p.1. and p(x; t ,y)  > 0 for 

N x (t), it holds f o r  (8). (D2) i s  proved i n  Theorem 2. 

t "  rv 



y by assumption, q(x; t , y )  ( the densi ty  f o r  ru P(x; t , A ) )  i s  pos i t ive  

for almost a l l  y (Lebesgue measnre). This implies (D3). (D4) i s  

a consequ-ence of Theorem 1. 

f o r  a l l  la rge  x. (See Theorem 4 i n  [ g ] ) .  Indeed, the average time 

t o  leave the  set  x(0) = x) i s  bounded above by 

(V(x) - a)/€ < co. 

( D l - 3 )  hold.  

(D5) i s  a consequence of 2V(x) < - E  < 0 -. 

% - Qa - &a ( fo r  

ThLs together with (11) gives (D?).  Thus a l l  

Q(A) s a t i s f i e s  

Thus &(A) > 0 for a l l  s e t s  A of  pos i t ive  Lebesgue measure and has 

densi ty  I Q ( d x ) q ( x ;  t . u ) ,  which must be pos i t ive  almost everywhere. 

For a process with a t r ans i t i on  densi ty  and a unique in- 

var ian t  measure Q( .) 

Theoren 51 proves that P(x; t , A )  -+ Q(A) as  t -+ 00 f o r  any x. Q.E.D. 

with a nowhere zero density, Doob [7, 
fv 
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